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1. Introduction 

The present study explores the thermofluid characteristics of a seawater-methane heat exchanger that 
could be used in the liquefaction of natural gas on offshore platforms.  The compression process generates 
large amounts of heat, usually dissipated via plate heat exchangers using seawater as a convenient cooling 
fluid.  Such an application mandates the use of a corrosion resistant material.  Metals such as titanium, 
expensive in terms of both energy and currency, are a common choice.  The �total coefficient of 
performance,� or COPT [1], which incorporates the energy required to manufacture a heat exchanger along 
with the pumping power expended over the lifetime of the heat exchanger, is used to compare conventional 
metallic materials to thermally conductive polymers. 

The thermofluid characteristics of heat exchangers built of high thermal conductivity polymers are 
analyzed, for conditions typically seen by ADGAS.  It assumes a 1 year service life for a typical plate heat 
exchanger, though heat exchangers operating in such corrosive environments may have far shorter service 
lives.  In this study the hot natural gas is represented by 90ºC methane and 35ºC seawater is used as the 
coolant.  Gas is flowing through the heat exchanger at 10 m/s, and water at 0.5 m/s.  Analytical models 
were used to calculate the heat transfer rates and the required pumping power, as well as additional 
metrics, over a range of fin spacings, wall thicknesses, and thermal conductivities.  

2. Key Features 

The plate heat exchanger studied here is shown in Figure 1, with process temperatures of 90ºC methane 
and 35ºC seawater.  This heat exchanger was analyzed based on not only the geometry, but the invested 
energy content of the material.  Thermally-enhanced polymers provide an interesting thermal optimization 
opportunity.  A typical thermally-enhanced polymer is a composite material of a base polymer, such as 
nylon or polypropylene, and carbon fiber fillers.  These fillers have the potential to increase the thermal 
conductivity by one to two orders of magnitude, but with this follows an increase in the invested energy of 
the material. The lifecycle energy content of a thermally enhanced polymer is plotted in Figure 2 as a 
function of thermal conductivity.  This energy content can be seen to increase dramatically, from 75 MJ/kg 
to 240 MJ/kg as the thermal conductivity is increased from 1 W/mK to 25 W/mk.  Figure 3 shows the 
fraction of total lifetime energy consumption that is invested before the heat exchanger is installed. 
Aluminum, Titanium, an unfilled polymer, a low-k polymer (5 W/mK), and a high-k polymer (20 W/mK) 
are compared.  It can be seen that, for the short service life typical of seawater heat exchangers, the energy 
invested in manufacturing dominates.  For a titanium heat exchanger, less than 5% of energy is used in 
operation. 

 
 

 
Figure 1.  Doubly finned parallel counterflow heat exchanger. 
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