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Abstract 

Offshore steel structures are subjected to hydrodynamic forces.  These forces induce vibration in the 
structure, which in turn has a great effect on the safety and durability of the structure and the manpower 
operating it.  Magnetorheological (MR) dampers are proven as a feasible alternative to reducing structural 
vibrations.  This paper presents the initial investigation of integrating MR dampers in Offshore Steel Jacket 
Platforms to decrease the vibrations discussed.  A Steel Jacket Structure with MR damper is simulated 
using Simulink and the results are presented.  In addition, an experimental model is designed to verify the 
simulation responses.   

1. Introduction 

Offshore platforms have been developed over the years from traditionally shallow water structures to 
modern deep sea structures.  They are commonly used for oil and gas extraction.  Although there are many 
different types of offshore structures the steel jacket type platform on a pile foundation is the most 
commonly used [1].  These structures, normally anchored to the sea bed, are affected by wave forces, 
unlike onshore structures which incur vibrations due to seismic excitations and excessive random shocks 
[1, 2].  The flexibility of the steel jacket platforms generates self-excited non-linear hydro dynamic forces 
in addition to their non-linear response to large deformations [3].  Although the risk of failure or damage in 
such structures is higher than experienced in other structures the safety of these can usually be insured by 
increasing their stiffness so as to shift the natural frequencies away from the resonant range of frequencies. 
Such technique is costly and requires high maintenance for large offshore structures [4]. 

Several models for offshore structures are available in the literature; the majority of which are derived 
using finite elements methods.  The mass matrix in finite element analysis is usually calculated using the 
consistent mass method or the lumped mass method.  In either case, calculating the mass matrix is time 
consuming and the resultant matrix tends to be very large for control purposes.  Another technique 
developed by Horr et al. [5] makes use of the spectral element method to derive the element matrices and 
uses the Timoshenko beam theory.  This method calculates the distributed mass exactly and only one 
element needs to be placed between two nodes.  The Euler-Bernoulli theory [6] was shown to be 
inadequate for the prediction of higher modes of vibration and also with beams where the effect of cross-
sectional dimensions is not negligible; therefore, an alternate technique should be used to derive a more 
accurate model of the structure.  Timoshenko beam theory [5] takes into account the effects of rotary 
inertia and shear deformations.  If shear deformation is significant, the assumption that plane sections 
remain plane is no longer valid.  Therefore, Timoshenko corrections are necessary to make more accurate 
predictions of high modes of vibration.  In this work, the calibrated spectral Timoshenko pipe element [5] 
is used to model an offshore oil platform.  The goal of this research is to develop an accurate model of the 
platform and to reduce its vibrations using MR dampers.  

Traditionally, over the last several decades, MR dampers have been used extensively in reducing the 
vibrations of civil engineering structures [7, 8, 9, 10, 11], automobiles, and household appliances.  MR 
dampers have a very important advantage [7]; they can provide large force outputs for a small change in 
current input.  Moreover, these dampers can be actively used to systematically reduce or eliminate the 
vibrations of structures.  Offshore oil platforms are known to undergo a lot of vibration during extreme 
weather conditions and when strong waves and currents hit the platform [8].  MR dampers are capable of 
providing the large damping forces [9] necessary to absorb the effect of the hydro-dynamic forces on the 
platform.  To validate the theoretical findings, an experimental setup is built and tested in our laboratory.  

2. Dynamic Models 

In order to simulate the system understudy, the theoretical models of both devices � the MR damper and the 
Offshore Steel Jacket Platform are presented and discussed in the next section.   
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2.1 MR Damper Model 
MR dampers are highlighted to be highly non-linear devices, and when subjected to a sinusoidal load, 

exhibit bi-viscous, hysteretic and non-linear behavior [9, 10, 12].  Several models are used to describe the 
MR damper response including the Bouc-Wen model, Bingham model and the bi-viscous hysteresis model 
[12].  Other models for MR dampers are also available see for example [7, 9, 12, 13].  These models are 
usually used in conjunction with a control scheme to dampen out the vibration of an engineering structure 
which has similarities to the Bouc-Wen model, and has been verified to be reliable in reducing vibrations 
[12].  The Bouc-Wen model in Figure 1 has been shown to accurately predict the behavior of a prototype 
MR damper over a broad range of inputs [9 and 14].  This model is numerically tractable and has been 
used extensively for modeling hysteretic systems.  It is extremely versatile and can exhibit a wide variety 
of hysteretic behavior.   

The equations governing the force f predicted by this model are given by: 
 

 

The evolutionary variable z is governed by: 
 

and 

The accumulator stiffness is represented by kd1, and the viscous damping for large velocities is denoted 
by cd0i.  A dashpot, represented by c d1i, is included in the model to introduce the nonlinear roll-off in the 
force-velocity loops at low frequencies.  Similarly, a spring with constant kd0 is included in the model to 
control the stiffness at large velocities.  It is assumed that the initial deflection of the spring, whose 
constant is kd1, is xd0.  Consider the modified Bouc-Wen model depicted in Figure 1.  The displacement of 
the ith damper, (i =1, 2), can be expressed in terms of the displacement wi  and xti as follows: 

where the evolutionary variable i is governed by [7]:  

and wi  and xti  are the displacement of the front and back nodes of the structure where the ith damper is 
placed.  The constants , , n, and  are given in [9].  Referring to the schematic diagram shown in Figure 
1, the ith damper force, Fi, for i =1, 2, can be written as:  

where  

 

 
 

Figure 1.  Simple Mechanical Models of the MR Damper. 
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c_d0i= c_d0a+ c_d0b V_i    i =1, 2 
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c_d1i= c_d1a+ c_d1b V_i (8c) 
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The values of the constants a, b, cd0a, cd0b, cd1a, and cd1b are listed in [9].  The variables i, cd0i, and cd1i 
are functions of the current driver voltage output, Vi as it is indicated in (8a,b, and c).  However, for 
control purposes, it is better to express these variables in terms of the applied voltage i.  The voltage 
applied to the ith current driver, i, is related to the output voltage, Vi, as follows:  

Equations (8)-(9) are used to obtain the variables i, cd1i and cd0i, as a function of the applied voltage i. 
The selection of the voltage i is described in the next section.  The reader can refer to [7] for more details.  
To take full advantage of the unique features of the MR damper for the offshore platform, the Bouc-Wen 
model has been used to accurately reproduce the behavior of the MR damper. 
 
2.2 Offshore Steel Jacket Platform 

Several models for offshore structures have been developed where mostly they were derived using 
finite element method.  Another technique that is less time consuming has been developed by [5].  This 
method is based on using the spectral element method to derive the element matrices and uses the 
Timoshenko beam theory.  The spectral element method concerns the synthesis of wave forms from the 
superposition of many frequency components [6, 15, 16, 17].  The spectral approach used was based on the 
exact solution of the governing differential equation for the dynamic motion of structures which differs 
from the classical method by using Fast Fourier Transform for conversion purposes.  In the work, it is 
proposed to theoretically and experimentally verify the design and control of the vibrations of steel jacket 
platforms caused by hydrodynamic forces. 

Both the linear and non-linear forms of the Morison�s equations have been used in the literature and 
comparative studies are available in [2].  It was shown that the non-linear Morison equation provides 
superior results in particular when the wave frequencies are near the first mode of the offshore structure 
[2].  Motivated by the work of [5] a dynamic model based on Timoshenko Pipe Element is developed for 
an offshore structure.   

The dynamic response of a structure is a general function of space and time.  If the time variation of the 
solution is focused on at a particular point in space, then the spectral representation of field variable is 
shown in (10): 

where  represents the angular frequency and nu  are the Fourier coefficients.  The governing differential 
equations in structural dynamics are given in term of both space and time derivatives.   

The general form of the one dimensional, homogeneous differential equation can be expressed as [17]: 

 

where c1, c2, � can be functions of position but not time.  The differential equation can be represented by: 
 

This summation must be true for each value of n, and hence there are n equations as: 

which can be written as [18]: 
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where coefficients C1, C2, � are complex values.  The summation of n frequency components reconstructs 
the time dependency for the response. For a linear differential equation with constant coefficients, the 
spectral solution can have the form Ceikx, where k is called the wave number and is obtained by solving the 
characteristic equation,  

The complete spectral solution of any differential equation is obtained by summing all modes for each 
frequency values [6, 19, 20, 21]: 

 

Therefore, the general solution for a differential equation with non constant coefficient can be 
expressed as [22]: 

where An is an amplitude spectrum and T is the system transfer function. 
The shear-deflection effect is a significant parameter in the flexural vibration of a short member of a 

tubular structure, thus it must be included.  This requires some modifications in the conventional finite 
element formulation.  This is accomplished by introducing a shear coefficient, defined as the ratio of the 
actual beam cross-sectional area to the effective area resisting shear deformation [23], in the stiffness 
matrix.  The element shear stiffness generally decreases with increasing value of the shear coefficient.  As 
the ratio of the radius of gyration of the pipe member cross-section to its length (r/L) becomes small 
compared to unity, the significance of this coefficient decreases. 

In the conventional beam theory, it is assumed that the cross-sectional dimensions of a beam element 
were small in comparison with its length.  For the purpose of including the effects of the cross section 
dimensions on the frequency, [23] has included some corrections to the theory given by Timoshenko.  This 
addition of shear deformation leads to the invalidity of the Euler Bernoulli theory that plane sections 
remain plane.  This means that the slope  of any section along the length of the beam simply cannot be 
obtained by differentiation of the transverse displacement v. This then creates two independent motions  , 
v.  These corrections are important when studying the modes of vibrations of higher frequencies [22] when 
a vibrating beam is subdivided into comparatively short length portions.  Timoshenko [23] gave the 
equation of motion for a beam with tubular section as: 

 

where K is a factor depending on the shape of the cross section and G is the modulus of shear rigidity. The 
shear force and bending moments acting on any section of beam are: 
 

 

The spectral solution may be found as [15, 24, 25]: 

These solutions may be substituted into the equations of motions, 
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which result in the following relationship between the motions for each mode as: 

where 

 

Since both motions are independent, it is possible to consider one of them as unknown: 

 

where A, B, C, D, P1 and P2 are constants.  Equations (26) are the exact solutions to the governing 
Equations (18) and (19), thus it can be considered as a shape function.  This results in the possibility of 
writing the four unknown coefficients in terms of nodal displacements.  For the element of length L, with 
no load applied between the nodes, the spectral shape function can be written as [25]: 

 

It can be shown that the equation of motion of the structure using the Timoshenko beam elements can 
be written as follows: 

 

where M , C, and K represent the global mass, damping and stiffness coefficients, respectively.  u is the 
MR damper force and WF is the hydrodynamic force applied on the structure. Or in state space format: 
 

 

where x is the state vector containing the nodal displacements and velocities.  
 
2.3 Hydrodynamic Forces 

The difficulties in the dynamic response analyses of such structures arise from the random nature of loading, 
the non linearity of the drag-dominated wave forces, and the nonlinear relation between such forces and the 
response structure. The wave induced nonlinear model proposed by Morison [26] was linearized by [27].  This 
linearization reduced drastically the analytical and conceptual solution time. Stavros [28] investigated the use of 
Morison�s equation in estimating the response of an offshore structural model and concluded that amplified 
equivalent damping factors should be used on the results from the linearized displacement to match the 
nonlinear response. Other researchers [2, 29, 30, 31] who studied the wave induced forces derived from the 
linear form of Morison�s equation.  But only the latter has studied the validity and accuracy of the linear form of 
Morison�s in estimating the wave induced forces as compared to non linear form. 

The Morison equation for a horizontal wave induced force acting at a joint p in an offshore structure, 
using Morison�s equation for a unidirectional plane waves in the presence of wind-induced water currents is: 

 

in which   are, respectively, the horizontal displacement, velocity and acceleration at joint p; 
, are respectively the horizontal displacement, velocity and acceleration of water at joint p; 

Ap is the lumped area dedicated to joint p; Bp is the lumped volume dedicated to joint p; CD is the drag 
coefficient; CI is the inertia coefficient and  is the water density.     

0220 AGAKk
GAKkiv   (24) 

A
GAKC

A
EIC

A
IC

and

C
C

CCC
C

C
k

321

2
1

22

2

1

3

4
2

2

2

2

1

2

3

2

;;

1
4
11

2
1

  (25) 

 
xik

2
xik

1
xik

2
xik

1
^

x(ikxikxikxik
^

2121

2121

DePCePBePAeP)x(v

DeCeBeAe)x(
 (26) 

 
)xL(ik

2
)xL(ik

1
xik

2
xik

1
^

)xL(ik)xL(ikxikxik^

2121

2121

DePCePBePAeP)x(v

DeCeBeAe)x(

 
 

(27) 

 (28) 

 (29) 

(30) 

  (31) 



              The Second International Energy 2030 Conference 
 

Abu Dhabi, U.A.E., November 4-5, 2008 296 

The horizontal water velocity and acceleration depend on the wave field characteristics.  Considering 
single fixed wavelength, the corresponding horizontal water velocity and acceleration at joint p in a 
structure are defined as: 

 

where yp is the elevation at joint p from the sea-bed; h is the water depth;  is the wave frequency; H is the 
wave height; k is the wave number (2 /L) where L is the wavelength; and Uow is the current velocity at the 
water surface level which is usually 1% of the wind speed at a height of 10 m above the water surface. 
Using the linear assumption derived by [32], and with some substitutions, the force can be written as: 
 

 

This equation clearly shows that the damping and mass of the structure contribute to the wave induced 
forces.  The term containing the nodal vector  is usually added to the mass matrix M and 
the term containing is added to the damping matrix C. 

The theoretical bases of the MR damper and the Offshore Oil Platform models has been presented.  A 
combination of the Timoshenko Pipe Element model with the MR Bouc-Wen damper model will be 
investigated experimentally and digitally.   

3. Simulation Results 

In this section, the simulation results of two open loop systems will be presented.  The two systems 
represent the offshore steel jacket platform and the MR damper, respectively. 
 
3.1 Offshore Steel Jacket Open Loop System 

A simple steel jacket platform shown in Figure 2 is used as an illustrative example.  For which the 
wave height H is 0.05m, water depth h is 0.03m, wave length L is 1.33m, and current velocity of the water 
surface Uow is 0.122m/s.   

The performance of the system is simulated when no control is applied to the system and with the wave 
frequency of 1.8 rps applied to the structure.  The simulations results of the equations of motions (30) and (34) 
with zero input from the MR damper for the three floors are shown in Figures 3a, b, and c.  These responses are 
the solutions of the linearized Equation (30) due to the hydrodynamic force of Equation (34) and shown in 
Figure 4.  The steady state displacement is harmonic due to the nature of the hydrodynamic force.  Figures 5a, b, 
and c show the displacement of the three floors due to a pulse input to represent an arbitrary shock wave on the 
structure.  It is clear that the structure is very stiff and very lightly damped.  Therefore, the oscillations of the 
system must be damped out through a dissipation device such as the MR damper. 
 

 
Figure 2.  Diagram representing the position of the nodes. 
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Figure 3.  Floor displacement at nodes 8, 10 and 14. 
 
 
 
 

 
Figure 4.  Hydrodynamic forces. 
  

 
a) Node 8 

 
b) Node 10 

 
c) Node 14 
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Figure 5.  Displacement at nodes 8, 10 and 14. 
 
 
3.2 MR Damper Open Loop Model 

The response of the MR damper due to a 1Hz sinusoid with an amplitude of 1 applied as a 
displacement to the damper and the result is shown in Figure 6. The damper is voltage is assumed to be a 
pulse voltage of 100V.  It can be seen that the applied voltage significantly alters the characteristics of the 
damper force.   

 

 
Figure 6.  Response of a MR Damper. 
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4. Experimental Model  

To validate the theoretical findings, an experimental setup is built in our laboratory (Figure 7).  The 
setup consists of two major parts: the steel structure and the wave generator (Figure 8).  A computer 
equipped with a data acquisition system is used to collect data from several accelerometers which are 
shown in Figure 9 strategically placed on the structure.  

A controller is used to manipulate the accelerometers� data and output the correct voltage command for 
the MR damper. The controller voltage command is then transmitted to the MR damper through a voltage 
to current converter to produce the necessary damping force. Correct implementation of the control law 
will reduce the vibration of the steel structure. 

 
 

 
 

 

Figure 7.  Experimental Model of the Overall Offshore Platform. 
 
 
 

 
 

Figure 8.  Experimental Wave Generator. 
 
 
 

 
 

Figure 9.  MR dampers and accelerometers. 
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5. Results and Discussion 

A dynamic model for the steel jacket structure is derived using the Timoshenko beam theory.  It is 
assumed that the vibrations of the structure are damped out using an MR damper.  The model of the MR 
damper is presented here based on the Bouc-Wen model. The source of vibration of the structure is the 
effect of the hydrodynamically induced forces.  The wave equations are developed based on the Morison�s 
equation for a unidirectional plane wave.  The model for the structure is simulated and the displacement 
responses of the three floors are presented here.  An experimental setup is built in our laboratory to 
validate the theoretical findings. The setup is almost ready for data collection. The data will be provided in 
due time. 

6. Conclusions 

The accuracy of the dynamic models of large civil engineering structures depends on the modeling 
technique used, the assumptions made, and the accuracy of the parameters of the system.  In this work a 
modeling technique known as spectral elements method is used to model the dynamic behavior of an 
offshore structure under the effect of hydrodynamic force.  MR dampers are actively used to reduce the 
vibrations of the platform.  These are smart actuators whose output force varies with the applied current. 
Moreover, MR dampers are capable of providing large forces for a relatively small input current. An 
experimental setup is built in our laboratory to validate the theoretical model and to implement the 
designed controller.  The preliminary experimental results are promising and show agreement between the 
first four modes of vibrations.   
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